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Suppose that the successful completion of a project requires performing n tasks, each of which

has a probability of success p. The paper establishes under what conditions it may be profitable
to engage in parallel multi-tasking, i.e. tackling each task by following two independent

routes. It is found that for 8n>1 parallel multi-tasking is profitable for a wide range of

parameters when costs are linear and is always profitable for convex costs. Copyright# 2008
John Wiley & Sons, Ltd.

INTRODUCTION

This paper is supposed to surprise and even baffle
the reader. On the one hand, the paper can trace its
origins back to an illustrious precursor1 and on the
other it can hardly refer to recent economic
literature on the subject, and even then only in a
very tangential way. It puts forward a simple case
for re-organizing most kinds of economic activity,
by claiming that there are significant surpluses
waiting to be collected.

The central message of the paper is that a wide
variety of organizations would benefit from
pursuing critical tasks in parallel. Of course, at
least ever since Nelson’s seminal paper (1961) on
the economics of parallel R&D, economists have
been aware of the potential advantages of pursuing
simultaneously more than one research path. It
may be recalled that Nelson’s punch-line is that:
‘. . . parallel development of alternative designs
seems called for when the technical advances
sought are large, when much additional informa-
tion can be gained from prototype testing, and
when the cost of a few prototypes is small relative
to total systems’ costs’ (Nelson, 1961, p. 361).

This paper differs from the large literature
spawned by Nelson’s contribution in a number
of important respects insofar as:

(i) the optimality of parallel tasking is shown to
be independent of the size ‘of the technical
advances’;

(ii) it is not assumed that attempting to solve any
one problem in parallel yields any additional
information on any other problem; and,

(iii) the optimality of parallel tasking does not
depend on the cost of the early stage
(‘development’) being a small fraction of
the overall cost of the project.

The basic difference with models of systematic
search (where the decision-maker, faced with
various alternatives, each with a possible different
payoff distribution, has to decide which and
how many to explore) is that in this paper each
alternative/project requires the overcoming of
more than one task in order to succeed and
that tackling any one task in parallel does not
yield any information about the cost/probability
of success of any other task. In other words, the
paper does not deal with multiple sequential
search (as, for example, van Cayseele, 1986;
Vishwanath, 1992a,b), but addresses instead the
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rather unexplored area of the optimal organization
of multi-task activities.2

An Introductory Example

Consider a project that costs w and yields a gross
expected profit of pp where p is the probability
that the project succeeds. Normalize so that the
net expected profit is zero, i.e. p ¼ w=p: Assume
next that this project can be completed by
following more than one (statistically indepen-
dent3) route. Specifically, assume that, in addition
to the route yielding success with probability p and
cost w; there is another route that succeeds with
probability bp and that costs bw;4 with 05b41:
Should this second route be pursued and would
the answer depend on either b; p; or w?

Expected net profit from pursuing both routes in
parallel is given by

pð1þ b� bpÞp� ð1þ bÞw ð1Þ

i.e. using the normalization p ¼ w=p

pð1þ b� bpÞ
w

p
� ð1þ bÞw

¼ �wbp50 8p;b;w ð2Þ

This simple result would suggest that carrying
out a given task by running two parallel routes
may never be an efficient allocation. The next
section will dispel this notion.

THE BENEFITS OF PARALLEL MULTI-

TASKING

Very few economic activities succeed by over-
coming a single obstacle. Typically a firm has to
design, test, produce, market, and deliver any new
product and each of these activities in turn would
involve the solutions of many separate problems.
Thus the example in the above section misses a key
feature of economic (and other) activities, namely
the fact that the success of a project depends on
the combined successes of various stages.

An Introductory Example (Continued)

So let us modify the example in the first section
and assume that in order for the project to yield a
gross profit of p two separate stages have to be
completed, each with a probability of success
p and each costing w: Again, we normalize

expected net profit to zero:

p2p� 2w ¼ 0 ð3Þ

As before, assume that each of the two sub-
projects is carried out in parallel, with the original
resources yielding success with probability p and
costing w being coupled with other resources that
succeed with probability bp and that cost bw: I call
this arrangement parallel multi-tasking. In order
not to bias the analysis in favour of parallel multi-
tasking, we constrain b not to exceed unity, i.e. the
additional parallel route to success cannot be more
efficient than under single multi-tasking. The
structure diagram for parallel multi-tasking is
given in Figure 1.

Expected net profit is now given by

p2ð1þ b� bpÞ2p� 2ð1þ bÞw ð4Þ

i.e. considering the normalization (3),

EðpÞ ¼ 2w½ð1þ b� bpÞ2 � ð1þ bÞ�

¼ 2wb½ð1� 2pÞ þ bð1� pÞ2� ð5Þ

From (5) we can see that if p40:5 then the
addition of a parallel path is always profitable
irrespective of its efficiency (i.e. as long as b > 0).
Identical replication, i.e. when b ¼ 1 is profitable
for a somewhat larger range, namely p40:585 as
illustrated in Figure 2.

Is the two-obstacle case as much an anomaly as
the one-obstacle case?

Figure 1. Parallel 2-tasking.

Figure 2. Profitable parallel multi-tasking (two-obstacle

case).
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Parallel Multi-Tasking: The General Case

If the success of a project requires the successful
completion of n tasks, then expected net profits for
single and parallel multi-tasking are, respectively:

pnp� nw ð6Þ

pnð1þ b� bpÞnp� nð1þ bÞw ð7Þ

Using the same normalization as before, (7) can be
written as

nw½ð1þ b� bpÞn � ð1þ bÞ�

¼ nwb ðn� 1Þ � npþ
Xn
k¼2

n

k

 !
ð1� pÞkbk�1

" #
ð8Þ

This shows that a sufficient condition for parallel
multi-tasking to be profitable is that p4ðn� 1Þ=n:
Moreover, the larger the n the larger the region in
ðb; pÞ space where parallel multi-tasking is profit-
able, as shown in Figure 3, where bnðp; nÞ is the
locus along which parallel multi-tasking yields
zero profit.

Having shown that for very significant ranges of
b and p parallel multi-tasking is more profitable
than single multi-tasking, we have to address the
question of how much more profitable it may be. In
fact, if it turned out that, compared with some
relevant benchmark, the net benefits of parallel
multi-tasking are positive but small, it could be
argued that the model is not robust, insofar as the
cost of running parallel activities (which we have
assumed away) is accounted for, parallel multi-
tasking may be profit-reducing.5 An obvious
benchmark is the total cost in the single multi-
tasking case, nw, which we have normalized to be
equal to expected gross profit, pnp: In view of (8),
it is easy to see that net expected profit in the

parallel multi-tasking case is given by

nw� gðb; p; nÞ ð9Þ

where

gðb; p; nÞ � b

"
ðn� 1Þ � np:

þ
Xn
k¼2

n

k

 !
ð1� pÞkbk�1

#
ð10Þ

A few numerical examples suffice to show that
parallel multi-tasking is often not only more
profitable than single multi-tasking, but also by a
very large amount, thereby justifying our model-
ling choice of ignoring the additional cost of
running parallel routes to success (Table 1).

Figures 4–6 plot gðb; p; nÞ for three key values of
b; i.e. b ¼ 0:5; 0:75; 1:

In view of the substantial surplus generated by
parallel multi-tasking when a best-practice techni-
que is coupled with another of equal or lower
efficiency, it is not surprising that parallel multi-
tasking may be superior to single multi-tasking
even if it employs only lower-efficiency units.

A simple example may suffice. Consider the
two-task case and let (3) hold, i.e. single multi-
tasking yields zero expected net profit. Parallel
multi-tasking that uses four units with prob-
ability of success lp ðl51Þ and cost lw each
(what we call degraded replication) is profitable
provided that:

ð2lp� l2p2Þ2p� 4lw > 0 ð11Þ
Figure 3. Profitability of parallel multi-tasking increases

with n:

Table 1. Gain from Parallel Multi-tasking as
Percentage of Total Cost under Single
Multi-tasking

n p ¼ 2=5 p ¼ 1=2 p ¼ 2=3

b ¼ 0:5
2 19% 6% }

3 69% 45% 8%
4 135% 94% 35%

b ¼ 0:75
2 35% 14% }
3 129% 84% 20%
4 267% 182% 69%

b ¼ 1
2 56% 25% }
3 209% 137% 37%
4 455% 306% 116%
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i.e. using (3):

2wl½lð2� lpÞ2 � 2� > 0 ð12Þ

Thus, degraded replication is profitable for all
pairs ðl; pÞ that satisfy

2

l
1�

ffiffiffiffiffi
1

2l

r !
> p52�

ffiffiffi
2

p
ð13Þ

i.e. for all pairs ðl; pÞ that fall in the shaded area in
Figure 7.

The fact that deploying degraded units in
parallel can be more efficient than using a
series of highest-efficiency units is worth
emphasizing, as it adds weight to the superiority
of parallel multi-tasking. Indeed, it is a well-known
result in the statistical theory of reliability that
the probability of success of a system made up
of a series of two-unit modules in parallel is
minimized when all units have the same probability
of success.6 Therefore, the existence of a significant
range of values of l and p where degraded
replication is more profitable than single
multi-tasking is somewhat surprising insofar as
we are comparing the least efficient parallel
multi-tasking arrangement with the most
efficient single multi-tasking organization.

OPTIMAL PARALLEL MULTI-TASKING

WITH CONVEX COSTS

We can now relax the assumption of linear
costs and work with a richer model that
determines endogenously the ‘quality’ (i.e. the
probability of success) of the individual
units deployed to carry out a multi-stage
project.

Figure 5. Net profitability of multi-tasking.

Figure 6. Net profitability of multi-tasking.

Figure 4. Net profitability of multi-tasking.

Figure 7. Profitable degraded replication (two-task

case).
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Assumption 1:

(i) The cost of performing a task i that succeeds
with probability pi is given by cðpiÞ ¼ pWi :

(ii) n52 distinct statistically independent tasks
have to be successfully completed in order
for the project to yield gross profits p:

Under single multi-tasking the profit-
maximizer will solve the following program:

max
p
fpnp� npyg ð14Þ

For the second-order condition to hold, and for
p not to exceed unity, the following two restric-
tions must hold:

y > n; y > p ð15Þ

The equilibrium probability of success (for each
identical unit) is given by

pnS ¼
p
y

� �1=ðy�nÞ
ð16Þ

and the equilibrium expected net profit by

ðy� nÞ
p
y

� �y=ðy�nÞ
ð17Þ

In the case of parallel multi-tasking the profit-
maximizer will solve the following program:

max
p

EðpÞ � pnð2� pÞnp� 2npy ð18Þ

dE

dp
¼ 0)

p
y
ð2� pÞn�1ð1� pÞ ¼ py�n ð19Þ

Notice that in both maximization programs, we
assume that it is always optimal to use identical
units (i.e. p1 ¼ p2 ¼ � � � ¼ pn ¼ p). The rationale
for this assumption is explained in the following
result (which may be of independent interest):

Lemma 1:

The minimum of a Schur-convex function f ðpÞ is

attained at p1 ¼ p2 ¼ � � � ¼ pn ¼ %p ¼
1

n

Pn
i¼1 pi:

It is well known that if vector p majorizes vector p0

and f ðpÞ is Schur-convex, then f ðpÞ > f ðp0Þ: Ob-
viously for any vector p=p; where p ¼ f%p; . . . ; %pg;
it is the case that pgp:

Lemma 2:

Under Assumption 1, expected net profit from
parallel multi-tasking, hðpÞp� CðpÞ; is maximized
when the probability of success of all units is
identical.

The reliability function hðpÞ of a series of
modules made up of two units in parallel is known
to be is Schur-concave,7 i.e. p0gp00 ) hðp0Þ5hðp00Þ:
Considering that the cost function CðpÞ ¼ pW1 þ
� � � þ pWn is Schur-convex and therefore �CðpÞ is
Schur-concave, it follows that the expected profit
function hðpÞp� CðpÞ is Schur-concave and there-
fore is maximized at p1 ¼ � � � ¼ pn:

We can now prove the following:

Theorem 1:

If Assumption 1 holds, then expected net profits
under parallel multi-tasking are always higher
than under single multi-tasking.

Proof:

See appendix, where we prove Theorem 1 by
showing that even though the optimal prob-
abilities of success of a task under single and
parallel multi-tasking are typically different, i.e.
pnS=pnT ; the optimization over probabilities is
of second order compared with the optimization
over organizational structure, insofar as parallel
multi-tasking yields a higher net expected profit
even if tasks are carried out at the probability
of success that is optimal under single multi-
tasking. &

To give an idea of the magnitude of the extent to
which parallel multi-tasking dominates single
multi-tasking, a few numerical examples may
suffice (Figure 8) and Table 2.

Another, indirect, way of appreciating the
intrinsic superiority of parallel multi-tasking
compared with single multi-tasking is by compar-
ing net expected profits when an additional
constraint is imposed on parallel multi-tasking,
namely that the cost of the project cannot exceed
the optimal cost of the project under single multi-
tasking, i.e.

CðpnSÞ ¼CðpT Þ ! nðpnSÞ
W

¼ 2nðpT Þ
W ! pT ¼ 2�1=WpnS ð20Þ

Given that the optimal probability of
success under parallel multi-tasking is often
greater than under single multi-tasking, the
restriction imposed by (20) is a telling one.
Nevertheless it is not difficult to show that, even
under (20), parallel multi-tasking is the superior
organization.
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Corollary:

Under Assumption 1, expected net profits are
always higher under parallel multi-tasking than
under single multi-tasking even if the total cost of
the project is constrained to equal the total cost
under single multi-tasking.

Proof:

Under Assumption 1 and (20), we need to show that

pnT ð2� pT Þ
n5p�nS ð21Þ

i.e. using (20), setting W � nþ e and simplifying,

Gðn; eÞ � 2� 2�ðnþ2eÞ=eðnþeÞ � 21=ðnþeÞ50 ð22Þ

Noting that (i) lime!0 Gðn; eÞ ¼ 2� 21=n; (ii)
limn!1Gðn; eÞ ¼ 1� 2�1=e; and (iii) lime!1

Gðn; eÞ ¼ 0; it follows that (22) is satisfied for all
05e51 and all n52: &

CONCLUSIONS

By using what is probably the simplest model of
multi-task organization, I hope to have shown that

(a) (d)

(b) (e)

(c) (f)

Figure 8. Profitability under single and parallel tasking.
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for the fairly wide range of activities where success
requires the overcoming of more than one obstacle
it is very often the case that tackling each task in
parallel yields substantial net benefits. The super-
ior efficiency of ‘parallelism’ is, of course, taken
for granted by both applied and pure statisticians
of systems reliability. Perhaps it is surprising that
economists only recently have started to pay
serious attention to the issue of optimal organiza-
tion (as opposed to optimal allocation) of
resources, given that (i) the process of economic
research is a perfect example of a multi-
task activity that benefits greatly from parallel
multi-tasking,8 and (ii) the funding of economic
research is a prime example of sub-optimal
organization.9

APPENDIX

Proof of Theorem 1:

We have to establish that

tðpnSÞ � p�nS ð2� pnSÞ
np� 2np�WS

5 p�nS p� np�WS � sðpnSÞ ðA1Þ

W.l.o.g. we can normalize p ¼ 1 and, in view of
(16), re-write (A1) as

p�nS ½ð2� pnSÞ
n � 1�5np�WS

i:e: setting W � nþ e; e > 0

ð2� pnSÞ
n � 15np�eS ¼

n

nþ e
ðA2Þ

Thus, we can redefine the inequality posited in

Theorem 1 as:

Fðn; eÞ � 2�
1

nþ e

� �1=e
 !n

�1�
n

nþ e
50 ðA3Þ

Notice first that, as @F=@n > 0;10 in order to
prove (A3), it suffices to show that it holds for the
smallest feasible n; i.e. n ¼ 2:

2�
1

2þ e

� �1=e
 !2

�1�
2

2þ e
50 ðA4Þ

We are going to show that (A4) holds for all
15p > 0 in a series of steps.

Step one: (A4) holds for pnS4
1
2
:

To see this, notice that (A4) holds a fortiori if
the following holds:

3

2

� �2

51þ
2

2þ e
; i:e: ðA5Þ

10þ 5e58; which clearly holds for 8e50:
Step two: (A4) holds for pðiÞ > pnS >

1
2
:

As pnS >
1
2
; it is the case (from (16)) that e > 2:

Therefore (A4) holds a fortiori if the following
holds:

ð2� pnSÞ
253

2
; i:e: taking square roots;

pnS42�
ffiffi
3
2

q
; i:e: pnS40:775255 � pðiÞ ðA6Þ

Step three: (A4) holds for pðiiÞ > pnS > pðiÞ ¼ 0:77
5255:

In step three (and all subsequent steps), we
follow the procedure in step two, namely as pnS >

Table 2. Relative Superiority of Parallel Tasking under Convex Costs

tðpT Þ
sðpn

S
Þ relative profitability of parallel compared

to single multi-tasking

Overall probability
of success

Optimal probability
of success, pni

pT ¼ pnS pT ¼ pnT Single Parallel Single Parallel

n ¼ 2;W ¼ 2:5 8.928 13.048 0.025 0.207 0.16 0.262
n ¼ 2;W ¼ 3 4.333 4.375 0.111 0.339 0.333 0.354
n ¼ 2;W ¼ 4 2.5 2.578 0.25 0.497 0.5 0.457
n ¼ 3;W ¼ 3:5 37.21 529.9 0.0005 0.1467 0.081 0.312
n ¼ 3;W ¼ 4 15.43 27.83 0.015 0.2548 0.25 0.395
n ¼ 3;W ¼ 5 6.35 6.58 0.089 0.397 0.447 0.485
n ¼ 4;W ¼ 4:5 113.5 66.200 0.0000 0.131 0.049 0.369
n ¼ 4;W ¼ 5 44.48 281.8 0.001 0.213 0.2 0.434
n ¼ 4;W ¼ 6 15.23 20.82 0.027 0.342 0.408 0.515

tðpT Þ � expected net profits under parallel multi-tasking when probability of success ¼ pT . sðpnSÞ � expected net profits under
single multi-tasking when probability of success ¼ pnS : Asterisks indicate optimal choices.
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0:775255; it is the case (from (16)) that e > 9:64271:
Therefore, (A4) holds a fortiori if the following
holds:

ð2�pnSÞ
251þ

2

2þ 9:64271
; i:e: taking square roots

pnS42�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:17178

p
; i:e:

pnS40:917512 � pðiiÞ

Proceeding in a similar fashion, we can show
that:

Step four: pðiiiÞ ¼ 0:97878 > pnS > pðiiÞ ¼ 0:917512:
Step five: pðivÞ ¼ 0:996184 > pnS > pðiiiÞ ¼ 0:97878:
Finally, we notice that the whole process is

converging in view of the fact that:

Lim
e!1

2�
1

2þ e

� �1=e
 !2

�1�
2

2þ e

2
4

3
5 ¼ 0 ðA8Þ

NOTES

1. The theory underpinning this paper, the mathema-
tical theory of system reliability, was first developed
by John von Neumann (1956).

2. For a paper close to the spirit of the present one, see
Moldovanu and Sela (2006).

3. Throughout the paper we maintain the assumption
that the probabilities of success are i.i.d.

4. In this simple linear cost model the following
simplifying assumptions are made (each of which
can be dispensed with w.l.o.g.): (i) in order to avoid
the trivial case p ¼ 1 the zero profit-condition holds
at p51; (ii) therefore the cost of resources yielding a
probability of success bp is equal to bw for 05b41
and 1 otherwise.

5. This is the reason why in this paper we do not
consider the more general case when each task is
tackled in m ð52Þ ways (even though even stronger
results could be established). In fact, it could
be argued that massive parallelism could involve
substantial costs of coordination that could reverse
the organizational superiority of parallel multi-
tasking.

6. Let n ¼ 2 (two-task case) and consider the problem
of allocating four units with individual probabilities
of success p ¼ fp1; p2; p3; p4g with p1 > p2 > p3 > p4 to
the following structure:

The probability that the whole project succeeds is
given by fðpÞ ¼ ½1� ð1� piÞð1� pjÞ�½1� ð1� psÞð1�
ptÞ�; i=j=s=t: Consider the vector p ¼ f%p; %p; %p; %pg;
where %p ¼ 1

4
ðp1 þ p2 þ p3 þ p4Þ: Clearly p majorizes p

(i.e. pgp; see Marshall and Olkin (1979) for

definitions) and fðpÞ is strictly Schur-convex; there-
fore, fðpÞ > fðpÞ:

7. See, for example, El-Neweihi et al. (1986).
8. The analysis of research is as a ‘multi-component

system’, see La Manna (2004).
9. Consider the following example: a funding body

receives two separate funding proposals for the
attainment of a given research objective with a gross
payoff of £18m: Success requires the overcoming of
two equally difficult obstacles. Proposal 1 (the ‘good’
proposal) envisages two units each costing £1m
tackling one obstacle each with an individual prob-
ability of success equal to 1

3
: Thus, the net expected

return is 1
3
� 1

3
� £18 m� 2� £1 m ¼ 0: Proposal 2

(the ‘bad’ proposal) pursues two statistically inde-
pendent routes (independent of each other and of the
routes pursued by proposer 1) that are half as efficient
and half as costly (i.e. in the notation of the second
section, b ¼ 0:5), so that its net expected return is
1
6
� 1

6
� £18 m� 2� £0:5m ¼ �£0:5 m:Most funding

bodies would approve Proposal 1 and reject Proposal
2, whereas the correct choice, of course, would be to
fund them both, provided they are run in parallel
(in which case the net expected return would be
ð4
9
Þ2 � £18m� 2� £0:5 m� 2� £1 m ¼ £ 5

9
m). For

details, see La Manna (2008)
10.

@F

@n
¼

n

ðnþ eÞ2
þ 2�

1

nþ e

� �1=e
 !n

�
n

1

nþ e

� �ð1þeÞ=e

e 2�
1

nþ e

� �1=e
 !

0
BBBB@

1
CCCCA

þ 2�
1

nþ e

� �1=e
 !

Log 2�
1

nþ e

� �1=e
" #

�
1

nþ e
> 0

The inequality follows because the first two terms
are positive, the third is positive and strictly greater
than one, and the last is negative and strictly less
than one.
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